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Abstract

RNA silencing is a fundamental plant defence and gene control mechanism in plants that are directed by 20-24 nucleotide (nt)
small interfering RNA (siRNA) and microRNA (miRNA). Infection of plants with viral pathogens or transformation of plants
with RNA interference (RNA1i) constructs is usually associated with high levels of exogenous siRNAs, but it is unclear if these
siRNAs interfere with endogenous small RNA pathways and hence affect plant development. Here we provide evidence that
viral satellite RNA (satRNA) infection does not affect sSiRNA and miRNA biogenesis or plant growth despite the extremely
high level of satRNA-derived siRNAs. We generated transgenic Nicotiana benthamiana plants that no longer develop the
specific yellowing symptoms generally associated with infection by Cucumber mosaic virus (CMV) Y-satellite RNA (Y-Sat).
We then used these plants to show that CMV Y-Sat infection did not cause any visible phenotypic changes in comparison
to uninfected plants, despite the presence of high-level Y-Sat siRNAs. Furthermore, we showed that the accumulation of
hairpin RNA (hpRNA)-derived siRNAs or miRNAs, and the level of siRNA-directed transgene silencing, are not significantly
affected by CMV Y-Sat infection. Taken together, our results suggest that the high levels of exogenous siRNAs associated
with viral infection or RNAi-inducing transgenes do not saturate the endogenous RNA silencing machineries and have no

significant impact on normal plant development.
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nucleotide (nt) small interfering RNAs (siRNAs) and

INTRODUCTION

RNA silencing is a conserved gene controling
mechanism in eukaryotic organisms that is induced
by double-stranded RNA (dsRNA) (Baulcombe
2004). In plants, dsSRNA is processed by four different
Dicer-like (DCL) proteins into small RNAs (sSRNAs),
including 21 (DCL4), 22 (DCL2) and 24 (DCL3)

Received 19 March, 2013 Accepted 2 May, 2013

20-24 nt microRNAs (miRNAs) (DCL1) (Bouche
et al. 2006). These sRNAs are incorporated into an
Argonaute (AGO) protein to form an RNA-induced
silencing complex (RISC), and guide the RISC to
homologous target mRNA or DNA to direct mRNA
cleavage or DNA methylation (Eamens et al. 2008;
Wang et al. 2012). RNA silencing plays an essential
role in plant defence and development (Baulcombe
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2004; Moissiard and Voinnet 2004). The 21-22 nt
siRNAs are important in defence against viruses and
in regulating endogenous gene expression, whereas the
24 nt siRNAs guide the de novo cytosine methylation
process called RNA-directed DNA methylation, and
play an essential role in silencing transposons and
maintaining genome stability (Eamens et al. 2008).
miRNAs are essential for plant development as they
control the expression of many regulatory genes
such as transcription factor genes, and are involved
in developmental processes such as cell division,
leaf formation and flower development (Bartel 2004;
Chen 2005). Disruption of RNA silencing pathways,
especially the miRNA pathway, in plants can result
in developmental defects. For instance, Arabidopsis
plants with complete loss-of-function mutation in
miRNA pathway factors such as DCL1 and AGO1 are
unviable (Bohmert ef al. 1998; Kurihara and Watanabe
2004).

Plants are often exposed to exogenous siRNAs. For
instance, infection with viruses and subviral RNAs
are generally associated with the accumulation of
large quantities of siRNAs corresponding to the entire
viral genome (Wang et al. 2012). Transformation
of plants with RNA interference (RNA1) constructs,
such as long hairpin RNA (hpRNA) constructs,
results in the production of additional siRNAs (Fusaro
et al. 2006). Both viral siRNAs and hpRNA-derived
siRNAs are processed by the same endogenous siRNA
machineries such as DCL4, DCL2 and DCL3 (Fusaro
et al. 2006). This raises the question whether these
exogenous siRNAs would compete with endogenous
sRNAs for the RNA silencing machineries and
interfere with sSRNA-mediated gene regulation and
plant development.

In this paper, we investigated this question by
using Cucumber mosaic virus (CMV) Y -satellite
RNA (Y-Sat) as the source of exogenous siRNAs.
Satellite RNAs (satRNAs) are one of the smallest
plant pathogens and are regarded as parasites of plant
viruses as they do not encode functional protein and
depend entirely on the associated virus (helper virus)
for replication and spread (Roossinck et al. 1992;
Simon et al. 2004). SatRNAs usually replicate at
high efficiency and form stable secondary structures,
and accumulate at high levels relative to their helper

viruses. CMV Y-Sat is one of the best-studied
satRNAs (Takanami 1981; Masuta and Takanami
1989), and our previous studies have shown that
Nicotiana plants infected with CMV Y-Sat contained
extremely high levels of Y-Sat-specific siRNAs. For
instance, Northern blot hybridization showed that the
amount of Y-Sat siRNAs is much higher than that
of siRNAs expressed from a hpRNA transgene in
Nicotiana tabacum (Wang et al. 2004). Also, 5" end-
labelling of total SRNA from CMV Y-Sat-infected
N. tabacum suggested that Y-Sat-specific siRNAs
are more abundant than the total endogenous sRNAs
(Ebhardt et al. 2005). In addition, the CMV helper
virus strain is a type-II CMV strain which encodes
a weak 2b suppressor of RNA silencing (Ye et al.
2009) that would have minimum effect on host SRNA
accumulation. Therefore, CMV Y-Sat infection
provides a good model system for examining the
possible effect of exogenous sSRNAs on endogenous
RNA silencing pathways and plant development.

RESULTS AND DISCUSSION

CMYV Y-Sat infection does not affect plant
growth despite high levels of Y-Sat siRNAs

In this study, we used Nicotiana benthamiana as the
host for CMV Y-Sat, as this plant system is highly
susceptible to CMV Y-Sat infection, shows no visible
symptoms when infected with the mild CMV strain
(Q-CMV) used in this study, and is widely used for
studying RNA silencing via Agrobacterium-infiltration
(Baulcombe 1999). We observed that N. benthamiana
was more susceptible to Y-Sat infection and contained
a higher level of Y-Sat RNA than N. tabacum (Smith
et al. 2011). As CMV Y-Sat-infected N. tabacum
accumulates extremely high levels of Y-Sat siRNAs,
we expected that N. benthamiana would accumulate
similar or even higher amounts of Y-Sat siRNAs.
However, CMV Y-Sat infection of N. benthamiana
plants is associated with strong yellowing symptoms
(Smith et al. 2011). These yellowing symptoms have
been shown to be caused by Y-Sat siRNA-directed
silencing of the chlorophyll biosynthetic gene CHLI
and can be prevented by introducing a sat siRNA-

© 2014, CAAS. All rights reserved. Published by Elsevier Ltd.
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resistant version of the CHLI gene (mCHLI) into the
plant (Smith et al. 2011).

Since the yellowing symptoms affect plant growth
and would interfere with the visualization of other
abnormal phenotypes associated with developmental
defects, we transformed N. benthamiana plants with
the Y-Sat siRNA-resistant mCHLI construct (Smith
et al. 2011). Thirty putative T, transgenic plants were
transferred to soil, of which 19 were confirmed by
PCR to contain the mCHLI transgene (Fig. 1). To
further verify the transgenic plants, 10 of the PCR-
positive mCHLI transgenic lines plus 10 wild-type

(wt) N. benthamiana plants were infected with CMV
Y-Sat. The Y-Sat-induced yellowing symptoms were
completely abolished in the transgenic mCHLI plants,
while all the CMV Y-Sat-infected wt N. benthamiana
plants showed yellowing symptoms (Fig. 2-A). This
indicated that the mCHLI mRNA was expressed in
the transgenic plants and delivered resistance to Y-Sat
siRNA-directed silencing, allowing normal production
of chlorophyll in CMV Y-Sat-infected plants. This
result is consistent with that observed for transgenic
mCHLI N. tabacum plants (Smith et al. 2011).

The transgenic mCHLI plants showed no visible

Fig. 1 PCR detection of a 519-bp mCHLI sequence in 30 putative transgenic N. benthamiana plants (lanes 1-30). -, the negative control; +,

the positive plasmid control.

A
N. benthamiana wt wt mCHLI
CMV+Y-Sat - + +
B wt mCHLI C
I_Aﬁ I_Aﬁ
1 234567 8 + CMV+Y-Sat
CMV wt  wt mCHLI
Y-Sat 3 1 Z e
CMV siRNA = “
rRNA '
Y-Sat siRNA . '
U6 - w—— a—

Fig. 2 Transgenic mCHLI plants show no abnormal phenotype
despite the presence of high-abundance CMV and Y-Sat siRNAs. A,
phenotypes of an uninfected wild-type N. benthamiana plant (left),
and CMV Y-Sat-infected wild-type (middle) or transgenic mCHLI
(right) N. benthamiana plant. Photographs were taken at 12 d post
inoculation. Scale bar=5 cm. B, Northern blot hybridization of
wt and transgenic mCHLI plants infected with CMV Y-Sat at 22 d
post inoculation. The top panel shows the level of CMV RNA; the
middle panel shows the level of Y-Sat RNA; and the bottom panel
is ethidium bromide-stained rRNA for use as loading control. C,
Northern blot hybridization of CMV and Y-Sat siRNAs in wt and
transgenic mCHLI plants infected with CMV Y-Sat at 35 d post
inoculation. U6 RNA was hybridized for use as loading control.

phenotypic difference to the wild-type, untransformed
N. benthamiana plants (data not shown), which
allowed us to examine if CMV Y-Sat infection
would cause any abnormal growth phenotypes. As
shown by the example in Fig. 2-A, CMV Y-Sat-
infected transgenic mCHLI plants showed no
visible phenotypic differences to uninfected wt
N. benthamiana, consistent with previous observations
with transgenic mCHLI N. tabacum (Smith et al.
2011). Thus, CMV Y-Sat infection did not cause any
abnormal phenotypes to the mCHLI transgenic plants.
Northern blot hybridization showed that CMV Y-Sat-
infected mCHLI plants contained similar levels of
Y-Sat genomic RNA (Fig. 2-B) and Y-Sat siRNAs
(Fig. 2-C) to the wt plants. These results indicate that
a high level of Y-Sat siRNA accumulation did not
affect normal plant development in N. benthamiana.

Y-Sat-derived siRNAs do not interfere with
the biogenesis of endogenous small RNA

The lack of abnormal phenotypes in CMV Y-Sat-

infected mCHLI plants implied that CMV- and Y-Sat-
derived siRNAs do not have significant impact on

© 2014, CAAS. All rights reserved. Published by Elsevier Ltd.
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host plant SRNA pathways. To investigate this, we
first compared the level of hpRNA-derived siRNAs as
well as target gene silencing between uninfected and
CMV Y-Sat-infected mCHLI plants. Both infected
and uninfected plants were Agrobacterium-infiltrated
with a -glucuronidase overexpression construct (GUS)
and a hpRNA to induce GUS silencing (hpGUS), and
the infiltrated tissues analysed for GUS expression
and siRNA accumulation at 3 d post infiltration.
As shown in Fig. 3-A, the level of ApGUS-induced
silencing was similar between the uninfected and the
CMV Y-Sat-infected mCHLI N. benthamiana plants.
Consistent with the similar degree of GUS silencing,
hpGUS-derived siRNAs accumulated at a similar level
in uninfected and infected plants (Fig. 3-B). These
results suggest that CMV Y-Sat infection did not affect
the biogenesis of siRNAs or the downstream siRNA-
directed degradation of mRNA despite the high-level
accumulation of Y-Sat siRNAs.

The biogenesis of miRNAs requires DCL1, which is

A 350-
300 -
2
T 2501
3
v 2004
=)
o
0 150
g
100+
50 -
0 - -
T T 1
CMV+Y-Sat - - +
-
GUS GUS+hpGUS
B
GUS  GUS+hpGUS
f_’\ﬁ
CMV+Y-Sat - - +
1 2 3
hpGUS siRNA | = ..

US e — _-—

Fig. 3 The levels of ApGUS-induced GUS silencing (A) and
hpGUS-derived siRNAs (B) are not affected by CMV Y-Sat
infection. Agrobacterium-infiltration of transgenic mCHLI leaves
were performed at 17 d post inoculation, and infiltrated leaf samples
were collected and analysed at 3 d post infiltration. 5 pg of total
protein was used in MUG assay to determine GUS activity (A), and
10 pg of total RNA was separated in denaturing polyacrylamide
gel and hybridized with a RNA probe corresponding to the dsSRNA
stem region of the hpGUS sequence (B). U6 RNA was hybridized
for use as loading control (B).

different to the biogenesis of hpRNA-derived siRNAs
that depends primarily on DCL4 but also on DCL2 and
DCL3 (Fusaro et al. 2006). We therefore compared
the expression level of two miRNAs, miR159 and
miR171, between uninfected and CMV Y-Sat-infected
mCHLI N. benthamiana plants (Fig. 4). These two
miRNAs are conserved among plant species and
important in the control of plant development (Zhang
et al. 2006, 2007). Both miR159 and miR171were
accumulated at a similar level in uninfected, CMV
or CMV plus Y-Sat-infected samples. This result
suggests that, like siRNAs, the biogenesis of miRNAs
is not affected by CMV Y-Sat infection despite the
high levels of Y-Sat siRNAs. However, in this study,
we did not test if miRNA-directed target gene silencing
was affected by CMV Y-Sat infection. Given the
lack of visible phenotypes in the CMV Y-Sat-infected
plants, it is likely that CMV Y-Sat infection has little
effect on target gene regulation by miRNAs.

CONCLUSION

Our results suggest that a high level of exogenous
siRNAs has no significant effect on host SRNA
biogenesis and sRNA-directed target gene silencing.
This implies that the key RNA silencing machineries,
including DCLs and AGOs, are not saturable by
exogenous siRNAs. Thus, transformation of plants
with RNAI constructs such as the hpRNA constructs
is unlikely to cause abnormal plant development due
to interference with endogenous sRNA pathways.

CMV CMV+Y-Sat
— —
2 3 4 5 6

1 i = ..‘u
150 - -
miR171 .-‘ e e e

U6 ‘""‘ﬂuhﬂ“

Fig. 4 CMV or CMV Y-Sat infection does not affect the
accumulation of miR159 and miR171 in transgenic mCHLI
plants. 10 ug of total RNA from uninfected (lanes 1-2), CMV-
infected (lanes 3-4) or CMV Y-Sat-infected (lanes 5-6) plants were
separated in denaturing polyacrylamide gel and hybridized with an
antisense miR159 or miR171 oligonucleotide probe. The stronger
bands in the uninfected samples (lanes 1-2) are due to over-loading
of RNA samples as indicated by the stronger U6 RNA band.

© 2014, CAAS. All rights reserved. Published by Elsevier Ltd.
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However, our study focused on siRNAs derived from
a hpRNA transgene and a viral satellite RNA, both of
which are processed by DCL4/2/3, but not by DCL1
that is required for miRNA biogenesis. It would be
interesting to examine if the expression of artificial
miRNAs, which depend on miRNA machineries for
processing and function, would affect the biogenesis
of endogenous miRNAs and their function. However,
there has been no report of abnormal phenotypes
associated with the expression of artificial miRNA
in transgenic plants. Thus, exogenous siRNAs,
either from infecting viruses or from RNAi-inducing
transgenes, are unlikely to have a direct effect on plant
growth and development unless they have a target
sequence in the plant genome.

MATERIALS AND METHODS

Plant growth, virus inoculation,
Agrobacterium infiltration and MUG assay of
GUS expression

Nicotiana benthamiana plants used for transformation
were grown on MS medium in a 26°C growth room with
16 h/8 h light/dark cycle. Both wild type and transgenic
N. benthamiana plants for viral inoculation were grown
in a 25°C glasshouse with natural light. Infection of N.
benthamiana with Cucumber mosaic virus (CMV) plus
Y-Sat was performed as previously described (Smith et al.
2011). Basically, 3-4 wk old N. benthamiana plants were
dusted with carborundum and rub-inoculated with leaf
extracts of previously viral-infected leaves in 0.1 mol L™
phosphate buffer (pH 7.2). Agrobacterium infiltration was
performed as previously described (Liu and Lomonossoff
2002). Essentially, actively growing Agrobacterium cells
containing plant expression constructs were suspended in
infiltration buffer (10 mmol L™ MgCl, and 150 ug mL"
acetosyringone) and adjusted to a final optical density of
0.7 at 600 nm. The suspensions were incubated at room
temperature for 3 h and infiltrated into expanded leaves with
flat-pointed syringe. GUS expression was quantitatively
measured using fluorometric MUG (4-methyl-umbelliferyl-
B-D-gulcuronide) assay as described previously (Chen et al.
2005).

Agrobacterium-mediated transformation of
N. benthamiana

Transformation of N. benthamiana was performed using
the leaf disc method as described previously (Ellis et al.

1987). The Y-Sat siRNA-resistant mCHLI construct (Smith
et al. 2011) was transferred into Agrobacterium tumefaciens
strain LBA4404 via triparental mating (Ditta et al. 1980;
Ellis et al. 1987). Agrobacterium cells were grown for
2 d at 28°C on LB medium with appropriate antibiotics,
harvested by centrifugation and resuspended in MS broth.
Actively growing N. benthamiana leaves were cut into
small pieces (about 1 cm’) and immersed in Agrobacterium
cell suspension for 5 min. The leaf sections were then
transferred to the MSO plates and incubated for 48 h at 26°C.
The leaf disks were washed in sterilized H,O and transferred
to MS9 shoot regeneration medium containing timentin (150
mg L") and kanamycin (50 mg L") at 26°C. Newly formed
shoots (~1 c¢cm long) were excised and transferred to MS4
rooting medium containing the same antibiotics (Ellis et al.
1987). Plants with established roots were transferred to soil
and allowed to grow under normal growth conditions.

Ball-bearing DNA extraction and PCR

DNA was isolated from N. benthamiana leaves using the
ball-bearing methods as described previously (Colosi and
Schaal 1993). Small leaf discs (~0.4 cm’) were collected in
PCR tubes containing 75 uL 0.5x CTAB and a ball bearing.
Homogeniztion of tissues was carried out for 2 min at 30 s™
frequency in a Tissuelyser (Qiagen, German). 50 pL
chloroform was added to each tube and mixed vigorously.
The tubes were then centrifuged at 3800 r min™' for 5
min. 0.5 pL supernatant was used as template in the 20
pL of PCR. For the detection of mCHLI in the transgenic
plants, primers corresponding the mCHLI sequence
(5"-CCGTACGTGACGCCGAATTACG-3") and the OCS
terminator (5'-GAGCTACACATGCTCAGG-3") were used
with the following cycling conditions: 1 cycle of 95°C,
3 min; 35 cycles of 95°C, 30 s, 54°C, 30 s, and 72°C, 1 min,
and 1 cycle of 72°C, 5 min. PCR products were analyzed in
1% agarose gel.

RNA extraction and Northern blot
hybridization

Total RNA was isolated from N. benthamiana leaves
using Trizol reagent (Invitrogen, Australia) with overnight
isopropanol precipitation to maximize recovery of the small
RNA fraction. Northern blot hybridization was performed
as previously described (Smith ef al. 2010). For mRNA
detection, total RNA was separated in formaldehyde-agarose
gel and blotted onto a Hybond-N membrane (Amersham
Life Science, USA), and then hybridized with [a-"P] UTP-
labelled CMV RNA3a or Y-Sat probes obtained by in vitro
transcription (Smith et al. 2011). For small RNA Northern
blot hybridization, approximately 10 pg of total RNA was
separated in 17% urea-polyacrylamide gel, and blotted onto
a Hybond-N" membrane (Amersham Life Science, USA).
For small RNA hybridization, [a-’P] UTP-labelled RNA

© 2014, CAAS. All rights reserved. Published by Elsevier Ltd.
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probe as in mRNA Northern hybridization was fragmented
by treatment in carbonate buffer to reduce the probe to an
average size of ~50 nucleotides (Wang et al. 2001); [y-"P]
ATP-labelled locked nucleic acid probes were synthesized
as described previously (Jones et al. 2006; Eamens et al.
2011) and used for detecting miR159 and miR171.
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